HINTS

From black box to intelligible machine learning for the accurate diagnosis of medical images

Description

In this project we investigate how “hints” - additional annotations of the visual content of the image - can help medical image classification. We have shown that in skin lesion classification, annotations of high-level properties such as asymmetry of the lesion, can be used in multi-task learning to improve the robustness of the algorithm. Additionally, such annotations may help for the algorithms to be more explainable.

People

Ralf Raumanns (principal investigator), Veronika Cheplygina.

Funding

NWO (Dutch Research Council) Lerarenbeurs

References


  1. hints_faimi.png
    Ralf Raumanns, Gerard Schouten , Josien PW Pluim , and Veronika Cheplygina
    arXiv preprint arXiv:2407.17543, 2024
  2. enhance.png
    Ralf Raumanns, Gerard Schouten , Max Joosten , Josien PW Pluim , and Veronika Cheplygina
    MELBA (Machine Learning for Biomedical Imaging), 2021