Dovile Juodelyte

Dovile is a PhD Fellow working on transfer learning in medical imaging. She holds a BSc degree in data science from the IT University of Copenhagen. Prior to her transition to data science, she attained a MSc degree in Economics from Vilnius University and worked as a financial analyst. Currently, she is working on the project ‘CATS - Choosing a Transfer Source for Medical Image Classification’. Her research interests lie at the intersection of medical imaging, representation learning, and data science, with a particular focus on understanding the inner workings of transfer learning and generalization.

References

  1. source.png
    Source Matters: Source Dataset Impact on Model Robustness in Medical Imaging
    Dovile JuodelyteYucheng LuAmelia Jiménez-Sánchez, Sabrina Bottazzi , Enzo Ferrante , and 1 more author
    arXiv preprint arXiv:2403.04484, 2024
  2. citation.png
    [Citation needed] Data usage and citation practices in medical imaging conferences
    Théo Sourget, Ahmet Akkoç , Stinna Winther , Christine Lyngbye Galsgaard , Amelia Jiménez-Sánchez, and 3 more authors
    arXiv preprint arXiv:2402.03003, 2024
  3. actionability.png
    Towards actionability for open medical imaging datasets: lessons from community-contributed platforms for data management and stewardship
    Amelia Jiménez-Sánchez, Natalia-Rozalia Avlona , Dovile JuodelyteThéo Sourget, Caroline Vang-Larsen , and 2 more authors
    arXiv preprint arXiv:2402.06353, 2024
  4. revisiting.png
    Revisiting Hidden Representations in Transfer Learning for Medical Imaging
    Transactions on Machine Learning Research, 2023
  5. augmenting.png
    Augmenting Chest X-ray Datasets with Non-Expert Annotations
    Cathrine Damgaard , Trine Naja Eriksen , Dovile JuodelyteVeronika Cheplygina, and Amelia Jiménez-Sánchez
    arXiv preprint arXiv:2309.02244, 2023
  6. pharmaceutical.png
    Predicting Bearings’ Degradation Stages for Predictive Maintenance in the Pharmaceutical Industry
    Dovile JuodelyteVeronika Cheplygina, Therese Graversen , and Philippe Bonnet
    arXiv preprint arXiv:2203.03259, 2022
  7. shortcuts.png
    Detecting Shortcuts in Medical Images – A Case Study in Chest X-rays
    2022